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Abstract
We calculate the excursion and meander area distributions of the elastic
Brownian motion by using the self-adjoint extension of the Hamiltonian of
the free quantum particle on the half line. We also give some comments on the
area of the Brownian motion bridge on the real line with the origin removed.
We will focus on the power of self-adjoint extension to investigate different
possible boundary conditions for the stochastic processes. We also discuss
some possible physical applications.

PACS numbers: 02.50.FZ, 03.65Db, 05.40.Jc

1. Introduction

In this paper, we study some area distributions of an elastic Brownian motion [1], such as
the elastic Brownian excursion area and the elastic Brownian meander area. The goal apart
from the calculation of the area distribution of the elastic Brownian motion is to give a unified
framework to study different area distributions for the Brownian motion with generic boundary
conditions. This generalization is in close connection with the concept of the self-adjoint
extension in quantum mechanics. The self-adjoint extension gives a reasonable classification
for the possible boundary conditions of the quantum particle and so for the stochastic process.

Different area distributions of the Brownian motion in one dimension were calculated
by the mathematicians in the last century. The Brownian motion area was first calculated by
Kac [2]. The Brownian excursion area was calculated by Darling [3] and Louchard [4] and
the Brownian meander area was calculated by Perman and Wellner [5]. For the applications
and other distributions of the areas see [6, 7] and also the complete review by Janson [8], and
references therein.

The quantum mechanics methods first used by Comtet and Majumdar [9] to re-drive the
different area distributions of the Brownian motion. This method which is more common in
the physics literature apart from simplicity can give a unique way to calculate the different area
distributions. It is also very useful to generalize the results to more complicated stochastic
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processes. The self-adjoint extension of the Hamiltonian operator gives us the variety of
different possible boundary conditions in the presence of the boundary [10]. In this paper, we
will focus on the area distribution of the elastic Brownian motion which is equivalent to the
free quantum particle on the half line. We also calculate the area distribution of the stochastic
process equivalent to the free particle on the real line with a hole at the origin. Of course the
area distribution is just one of the myriad of possible distributions that one can investigate
for the elastic Brownian motion and the Brownian motion on the pointed real line. We will
summarize some of these distributions in the last section.

The paper is organized as follows. In the second section, we define the elastic Brownian
motion and its connection to the quantum particle on the half line. In the third section, we
use the same method as [9] to calculate the area distribution of the elastic Brownian excursion
and meander. Different limits of our calculation will give the well-known results. We will
conclude this section with some immediate application of our results and giving some hints
about other useful Brownian functionals. In the fourth section, using the results of section 3
we will give the distribution of the area for Brownian bridge with a point defect at the origin.
Finally, in the last section, we will summarize our results and possible future directions.

2. Elastic Brownian motion and quantum mechanics

The elastic Brownian motion is the natural generalization of the Brownian motion in the half
line with special boundary condition on the origin. To define the process we need first to
introduce the local time. The definition of the local time of the path ω at the point a is as
follows:

tl(a) := 1

2
lim
ε→0

1

ε

∫ T

0
1x+ε(Bs) ds, (2.1)

where 1x+ε(Bs) is the indicator for the time that the process is in the interval [0, x +ε]. One can
naively write the above equation as an integral over a delta function as tl(ω, 0) = ∫ T

0 δ(x(t)) dt .
The local time has dimensions of the inverse of velocity and can be written as tl(a) = n �t

�x
for

the discrete random walk, where n is the number of times the path hits the origin. Then one
can write the exponential of the local time as

exp

(−2π

η
tl

)
≈

(
1 − 2π

η
�x

)n

. (2.2)

To go to the discrete level we multiplied tl with (�x)2

�t
that comes from the central limit theorem.

Equation (2.2) is derived by considering 1− 2π
η

tl as the probability for a single reflection from
the origin it is possible to interpret the exponential of the local time as the probability that a
particle on a given path is reflected from the origin1. Then the Green’s function of the elastic
Brownian motion is just by the following expectation value:

G(x, y, T ) =
〈
exp

(−2π

η
tl

)〉
. (2.3)

The elastic Brownian motion is in close connection with the quantum particle on the half line.
The Hamiltonian operator of the quantum particle on the half line has self-adjoint extension
with the following boundary condition:

ψ(0) = −η

2π

dψ

dx

∣∣∣∣
x=0

. (2.4)

1 The name elastic Brownian motion comes from this property of the process. η = ∞ is the reflecting barrier, the
particle will be reflected from the boundary with probability 1. η = 0 is the absorbing barrier, the particle will be
absorbed after hitting the boundary. Other cases between two extreme cases are called elastic barrier.
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The above boundary condition is called Robin boundary condition. The energy of the particle
is Ek = 1

2k2 and the wavefunctions are

ψk =
√

2

π
cos(kx + δk), (2.5)

where tan(δk) = 2π
ηk

and δk is the phase shift corresponding to the s-wave. The solutions are
normalizable and complete.

The Hamiltonian is self-adjoint for all of the real values of η but to avoid the cases with
bound states we will consider just non-positive η. η = 0 is the Dirichlet boundary condition
and η → −∞ is the Neumann boundary condition. The Green’s function with respect to the
solutions of the Hamiltonian has the following form:

Gη(x, y, t) =
∫ ∞

0
dk e−iEktϕ(y)ϕ∗(x). (2.6)

Using the above equation, the Green’s function has the following form for arbitrary values of
the self-adjoint extension [11–13]:

Gη(x, y, t) = GF (x − y, t) + GF (x + y, t) +
4π

η

∫ ∞

0
dw e

2π
η

w
GF (x + y + w) η � 0;

(2.7)

Gη(x, y, t) = GF (x − y, t) + GF (x + y, t) − 4π

η

∫ ∞

0
dw e

−2π
η

w
GF (x + y − w)

+
4π

η
e

i 2π2t
η2 e− 2π

η
(x+y)

η � 0, (2.8)

GF (x − y, t) = 1√
2πit

ei(x−y)2/2t. (2.9)

For the special cases, Dirichlet and Neumann, the results are as follows:
Gη=0(x, y, t) = GF (x − y, t) − GF (x + y, t), (2.10)

Gη→−∞(x, y, t) = GF (x − y, t) + GF (x + y, t). (2.11)

One can use the above equations to get the Green’s function of the elastic Brownian motion
by just Wick rotation. The important point of this section is the possibility of using quantum
mechanics language to describe the elastic Brownian motion. The other interesting point is the
possibility of extending this equality into the level of the path integral representation [11–13].
In the following section, we use this correspondence to calculate different area distributions
of the elastic Brownian motion.

3. Area of the elastic Brownian motion

In this section, we will solve the problem of the area for the restricted Brownian motion, in
particular, we will solve the problem of the area distribution of the elastic Brownian excursion
and elastic Brownian meander. In the extreme limits we will get the well-known results.

3.1. The area under the elastic Brownian excursion

In this section, we calculate excursion area of the elastic Brownian motion. The definition of
the excursion area is as follows: take an elastic Brownian process that starts at x(0) = ε and
returns after time T to x(T ) = ε, without crossing the origin in between. We are interested in
the probability density P(A, T , ε) of the area A = ∫ T

0 x(τ) dτ for a fixed ε and then finally
take the limit ε → 0, it plays the role of the regulator and can be treated independent of the
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limit in the local time process. This regularization is just necessary for the Dirichlet boundary
condition but we are happy to keep it in our calculation to see its relevance in the calculation of
the Dirichlet boundary condition. To do this calculation we map the problem to the quantum-
mechanical problem. Now we use the method of Comtet and Majumdar [9] to calculate the
excursion area distribution. To satisfy the constraint that process stays non-negative between 0
and T one can multiply the above measure with the indicator function

∏T
τ=0 θ [x(τ)] exp (−2π

η
tl)

which θ is the step function. The distribution P(A,T) of the area under the elastic Brownian
excursion can then be expressed as the following quantum-mechanical problem:

P η(A, T ) = 1

Z
η

E

∫ x(τ)=ε

x(0)=ε

Dx(τ) e− ∫ T

0 ( 1
2 ( dx

dτ
)2+ 2π

η
δ(x(t))

T∏
τ=0

θ [x(τ)]δ

(∫ T

0
x(τ)dτ − A

)
, (3.1)

where Z
η

E is the normalization and corresponds to the quantum mechanics of a particle with
infinite wall at the origin and zero potential at the positive real line

Z
η

E = 〈ε | e−H0T | ε〉. (3.2)

The Hamiltonian, H0 is equal to the self-adjoint Hamiltonian that we discussed in the previous
section. After integration, for small ε we have

Z
η

E 	 2(η − 2πε)2

(
1√

2πT η2
− π

η3
e

2π2T

η2 Erfc

(√
2T

π

η

))
. (3.3)

The integral for the Dirichlet and Neumann cases is

Z0
E 	 1√

2π
ε2T −3/2 + O(ε3), η = 0,

Z∞
E 	

√
2

πT
+ O(ε2), η → −∞. (3.4)

The above partition functions are just the probability that an elastic Brownian motion goes
from x(0) = ε to x(τ) = ε in time T without crossing the origin. Taking the Laplace transform
P(λ, T ) = ∫ ∞

0 P(A, T )e−λAdA of both sides of equation (3.1) gives

P η(λ, T ) = 1

ZE

∫ x(τ)=ε

x(0)=ε

Dx(τ) e− ∫ T

0 ( 1
2 ( dx

dτ
)2+ 2π

η
δ(x(t))+λx(τ))

T∏
τ=0

θ [x(τ)]. (3.5)

In the numerator, we have the propagator 〈ε | e−H1T | ε〉 where H1 = − 1
2 ( dx

dτ
)2 + V (x)

and V (x) = λx for x > 0 and infinite for x � 0. We absorb the Dirac delta function
into the boundary condition as the case of the quantum particle on the half line, in the other
words, we consider the self-adjoint extension of this operator. The boundary condition of the
wavefunction after self-adjoint extension is the same as (2.4). The solution to the Schrödinger
equation is given by the Airy function as follows:

ψ
η

i (x) = Ai((2λ)1/3(x − E/λ))√∫ ∞
0 Ai2((2λ)1/3(y − E/λ)) dy

. (3.6)

Using the boundary conditions one can determine the discrete eigenvalues as follows:

eη

i = 2−1/3λ2/3c
η

i ,
Ai

(−c
η

i

)
Ai′

(−c
η

i

) = −η(2λ)1/3

2π
. (3.7)

Unfortunately, since the above equation is transcendental the exact form of c
η

i for the generic
boundary condition is not available. However, for the Dirichlet and Neuman boundary
conditions the solutions are just the magnitude of the zeros of Ai(z) and Ai′(z) on the negative
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real axes, respectively, we show them by −c0
i and −c∞

i . The first few real roots of Ai(z) are
approximately −2.338 11, −4.087 95, −5.520 56, −6.786 71, etc. The first few real roots of
Ai′(z) are approximately −1.018 792, −3.248 197, −4.820 099, −6.163 307, etc. Then the
wavefunctions in these two cases are

ψ0
i (x) = (2λ)1/6 Ai

(
(2λ)1/3x − c0

i

)
Ai′

(−c0
i

) , (3.8)

ψ∞
i (x) = (2λ)1/6 Ai

(
(2λ)1/3x − c∞

i

)
√

c∞
i Ai

(−c∞
i

) . (3.9)

To get the above results we used the identity
∫ ∞
x

Ai2(x)dx = −xAi2(x) + Ai′2(x). Using the
energy eigenvalues and wavefunctions one can write equation (3.5) as follows:

P η(λ, T ) = 〈ε | e−H1T | ε〉
Z

η

E

= 1

Z
η

E

∞∑
i=1

|ψ(ε)|2e−2−1/3λ2/3c
η

i T . (3.10)

For the Dirichlet and Neumann cases after considering small ε we have

P 0(λ, T ) =
√

2πλT 3/2
∞∑
i=1

e−2−1/3λ2/3c0
i T , (3.11)

P ∞(λ, T ) =
√

πT

2
(2λ)1/3

∞∑
i=1

1

c∞
i

e−2−1/3λ2/3c∞
i T . (3.12)

One can write equations (3.11) and (3.12) in the scaling form as follows:

P 0(λ, T ) = s
√

2π

∞∑
i=1

e−2−1/3s2/3c0
i , (3.13)

P ∞(λ, T ) = u

√
π

2
21/3

∞∑
i=1

1

c∞
i

e−2−1/3u2c∞
i , (3.14)

where s = λT 3/2 and u = T 1/2λ1/3. It is possible to do the inverse Laplace transform of the
functions (3.11) and (3.12) explicitly and find the distribution of the excursion area. To do so
we need the formula

L−1[exp(−sλa);A] = as

Aa+1
Ma(sA

−a) (3.15)

where Mβ

2
(z) is the well-known Wright function given by the following series:

Mβ

2
(z) = 1

π

∞∑
k=0

(−z)k

k!
�

(
β

(k + 1)

2

)
sin

(
β

(k + 1)

2

)
. (3.16)

For the Dirichlet boundary condition the inverse Laplace transform for T = 1 gives

P 0(A) =
√

2π
2

2
3

3

∞∑
k=1

c0
i ∂A

(
A− 5

3 M

(
c0
i

2
1
3

A− 2
3 ,

2

3

))

= 2
√

6

A
10
3

∞∑
k=1

e− 2(c0
i
)3

27A2

(
2
(
c0
i

)3

27

)2/3

U

(
−5

6
,

4

3
,

2
(
c0
i

)3

27A2

)
. (3.17)

where U(a, b, z) is the confluent hypergeometric function.
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To calculate the moments of the area one can work in the Laplace space and then
use the equality �(n)〈A−n〉 = ∫ ∞

0 P(λ, T )λn−1dλ. To do the calculations we need to first
define the generalized Riemann function �η(s) = ∑∞

i=1
1

(c
η

i )s
where c

η

i comes from equation
(3.7). The above relations help us to calculate the moments explicitly as follows:

〈An〉 =
√

2π2
1−n

2
n�

(
1 + 3(1−n)

2

)
�(2 − n)

�0

(
3(−n + 1)

2

)
. (3.18)

It was shown in [14] that the moments after regularization are

〈An〉 =
√

2π2
4−n

2
�(n + 1)

�
(

3n−1
2

)Kn (3.19)

where Kn is by the following recursion relation:

Kn = 3n − 4

4
Kn−1 +

n−1∑
j=1

KjKn−j , s � 1, (3.20)

the first few values are K0 = − 1
2 , K1 = 1

8 , K2 = 5
64 and K3 = 15

128 . Then the first few
moments of the excursion area are

〈A0〉 = 1, 〈A1〉 =
√

2π

4
, 〈A2〉 = 5

12
, 〈A3〉 = 15

√
2π

128
, . . . . (3.21)

There is also a nice relation between the Airy zeta function and Kn as follows:

�0

(
3 − 3n

2

)
= −4

3

cos
(

3πn
2

)
sin(πn)

K(n). (3.22)

For example, we have the following limits:

lim
n→0

n�0

(
3

2
(n − 1)

)
= 2

3π
, �0(0) = 1

4
. (3.23)

For the Neumann boundary condition we need another Laplace transform pair

L−1[λ−α exp(−sλ−a);A] = 1

A1−α
φ(a, α;−sAa);−1 < a < 0, s > 0, 0 < α < 1,

(3.24)

where φ(a, α; z) = ∑∞
k=0

zk

k!�(ak+α)
is the generalized Wright function defined for the a > −1.

Using the above formula the area distribution has the following form:

P ∞(A) =
√

πT

2
21/3

∞∑
i=1

1

c∞
i

∂

∂A

(
1

A1/3
φ

(−2

3
,

2

3
;−2−1/3c∞

i T A
−2
3

))
. (3.25)

The moments of the area for T = 1 can be written as

〈An〉 = 3
√

π

2
n+1

2

�
(

1−3n
2

)
�(−n)

�∞
(

3 − 3n

2

)
. (3.26)

These moments are the same as the moments of the Brownian bridge and can be regularized
in the same way [8]. Then the moments are

〈An〉 =
√

π2−n/2�(1 + n)

�
(

1+3n
2

) Dn, n � 0, (3.27)

where Dn is by the following recursion relation:

Dn = 3n − 2

4
Dn−1 − 1

2

n−1∑
j=1

DjDn−j , s � 1. (3.28)
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The first few values are D0 = 1, D1 = 1
4 , D2 = 7

32 and D3 = 21
64 . Then the first few moments

of the area are

〈A0〉 = 1, 〈A1〉 = 1

4

√
π

2
, 〈A2〉 = 7

60
, 〈A3〉 = 21

512

√
π

2
, . . . . (3.29)

It is not possible to find exact probability distribution for the generic η because for Robin
boundary condition c

η

i is not independent of λ and since they are related by non-algebraic
relation it is not possible to get c

η

i with respect to λ explicitly. However, one can follow the
calculations in the level of Laplace space. The wavefunction has the following form:

ψ
η

i (x) = (2λ)1/6Ai
(
(2λ)1/3x − c

η

i

)
√

c
η

i Ai2
( − c

η

i

)
+ Ai ′2

( − c
η

i

) . (3.30)

The Laplace transform of the distribution of the area is

P η(λ, T ) = (2λ)1/3

ZE(ε = 0)

∞∑
i=1

(
η2(2λ)2/3

4π2

) (
1

1 +
(

η2(2λ)2/3

4π2

)
c
η

i

)
e−2−1/3λ2/3c

η

i T . (3.31)

To pursuit the calculation let us consider small ηs. One can write c
η

i = c0
i + δc

η

i where δc
η

i

is the small perturbation around the zeros of the Airy function. After expansion of (3.7) the
perturbation is

δc
η

i ≈ η(2λ)1/3

2π
. (3.32)

For small η one can also expand ZE as follows:

Z
η

E ≈ η2

23/2π5/2
+ O(η4). (3.33)

Then P(λ, T ) after expansion is

P η(λ, T ) ≈
√

2πλT
3
2

∞∑
i=1

e−2−1/3λ2/3c0
i T − ηT

2π
λ. (3.34)

The inverse Laplace transform of the function after using equation (3.15) is

P η(A) ≈
√

2π
22/3

3

∞∑
k=1

c0
i ∂A

((
A − η

2π

)− 5
3
M

(
c0
i

2
1
3

(
A − η

2π

)− 2
3
,

2

3

))
. (3.35)

The moments of the area can be found by the same method as before by just replacing A in
equation (3.19) by A − η

2π
.

For the large ηs the same calculation can be done. The partition function of the elastic
Brownian motion for large η is

Z
η

E ≈
√

2

πT
− 2π

η
+ O

(
1

η2

)
. (3.36)

The perturbation of c
η

i after expansion of equation (3.7) is

δc
η

i ≈ −2π

c∞
i η(2λ)1/3

. (3.37)

Unfortunately, since the perturbation of the energy is dependent on the energy level we are
not able to find simple equation for the distribution of the area in this case.
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3.2. The area under the elastic Brownian meander

The definition of the elastic Brownian meander is similar to the elastic Brownian excursion,
the only difference is for the elastic Brownian meander we do not need to force the process to
come back to the starting point. In this case the partition function is

Z
η

M =
∫ ∞

0
db〈b| e−H0T |ε〉. (3.38)

One can show that

〈b|e−H0T |ε〉 =
√

1

2πT

(
e− 1

2
(ε−b)2

T + e− 1
2

(ε+b)2

T

)

+
2π

η
e

2π2

η2 T − 2π(ε+b)

η Erf c

[(
2π2T

η2

)1/2

− π(ε + b)

η

(
2T π2

η2

)−1/2
]

. (3.39)

For small η one can expand the error function up to the second order

〈b|e−H0T |ε〉 ≈ 1√
2πT

(
e− 1

2
(ε−b)2

T + e− 1
2

(ε+b)2

T

)
− 2√

2πT

e− 1
2

(ε+b)2

T(
1 − η ε+b

2πT

) . (3.40)

Taking the first-order correction with respect to η and integrating over b gives

Z
η

M ≈ Erf

(
ε√
2T

)
− η

π
√

2πT
e− ε2

2T . (3.41)

For η → ∞ it is easy to get

Z∞
M ≈ 1. (3.42)

Similar to the calculation that we did in the elastic Brownian excursion case one can write the
Laplace transform of the distribution of area as

P η(λ, T ) = 1

Z
η

M

∫ ∞

0
db〈b| e−H1T |ε〉. (3.43)

Using the wavefunction (3.30) one can get

P η(λ, T ) = 1

Z
η

M

∞∑
i=1

Ai
(
(2λ)1/3ε − c

η

i

) ∫ ∞
−c

η

i
Ai(y)dy

c
η

i Ai2
(−c

η

i

)
+ Ai′2

(−c
η

i

) e−2−1/3λ2/3c
η

i T . (3.44)

After expansion of the function with respect to ε and η the first correction appears in the
spectrum as follows:

P η(λ, T ) = √
π2−1/6(λT 3/2)1/3

∞∑
i=1

B
(
c0
i

)
e−2−1/3λ2/3c

η

i T . (3.45)

where B(c0
i ) =

∫ ∞
−c0

i
Ai(y)dy

Ai′
(−c0

i )
and c

η

i = c0
i +δc

η

i . The distribution of the area after inverse Laplace

transform is

P η(A, T ) = √
π2−1/6T 1/2

∞∑
i=1

B
(
c0
i

) ∂

∂A

×
(

1(
A − η

2π

)1/3 φ

(−2

3
,

2

3
;−2−1/3c

η

i T
(
A − η

2π

) −2
3

))
. (3.46)
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The continuation of calculation is now straightforward, we just need to use the well-known
results for the Brownian meander. The moments of the area for Brownian meander, i.e. η = 0,
for T = 1 are

〈An〉 = √
π2−n/2 �(n + 1)

�
(

3n+1
2

) Qn. (3.47)

Qn satisfies the following recursion relations:

Qn = βn −
n∑

j=1

αjQn−j ,

βn = αn +
3

4
(2n − 1)βn−1, (3.48)

αn = 6−2n

�(n + 1)

�(3n + 1/2)

�(n + 1/2)
.

The first few values are Q0 = 1, Q1 = 3
4 , Q2 = 59

32 and Q3 = 465
64 . Then the first few values

of the moments of the area are

〈A0〉 = 1, 〈A1〉 = 3

4

√
π

2
, 〈A2〉 = 59

60
, 〈A3〉 = 465

512

√
π

2
, . . . . (3.49)

To get the results for the small η one needs to replace A with A − η

2π
in (3.49).

The next interesting case is the Neumann boundary with η → ∞. The Laplace transform
of the distribution of the area after a little algebra is

P ∞(λ, T ) =
∞∑
i=1

κi e−2−1/3λ2/3c∞
i T , (3.50)

where κi = AI (c∞
i )

c∞
i Ai(c∞

i )
with AI (z) = ∫ ∞

z
Ai(y)dy. This distribution is exactly the same as the

distribution of the area of the Brownian motion, i.e.
∫ T

0 |Bt |dt . This is not surprising because
the absolute value of the Brownian motion is like considering the area in the presence of totally
reflecting boundary condition. Using the inverse Laplace transform one can get

P ∞(A, T ) = 2−1/3T

A5/3

∞∑
i=1

κic
∞
i M 2

3

(
2−1/3c∞

i T

A2/3

)
(3.51)

Using the well-known results for the area of the absolute value of the Brownian motion [8]
the moments of the area can be written as

〈An〉 = 2−n/2�(1 + n)

�
(

3n+2
2

) Ln, (3.52)

where Ln satisfies the following recursion relation:

Ln = βn +
n∑

i=1

6j + 1

6j − 1
αjLn−j , (3.53)

and αj and βj are the same as in equation (3.48). The first few values are L0 = 1, L1 = 1,
L2 = 9

4 and L3 = 263
32 . Then the first few values of the moments of the area are

〈A0〉 = 1, 〈A1〉 = 2

3

√
2

π
, 〈A2〉 = 3

8
, 〈A3〉 = 263

630

√
2

π
, . . . . (3.54)
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3.3. Some applications

Different applications of the area distributions of the Brownian motion in computer science,
graph theory, fluctuating one-dimensional interfaces and localization in electronic systems
were already discussed at length in many papers, see [16, 17] and references therein. The Airy
distribution function and its derivative appear extensively in all applications. In this subsection,
we will summarize some immediate simple applications of our extended Airy distribution.
We will discuss the distribution of the average distance of a particle from a disorder with point
interaction in three dimensions and the distribution of the average relative height distribution
of interacting interfaces in two dimensions. We will also discuss one more elastic Brownian
functional distribution related to vicious walkers interacting with the boundary.

The first immediate application comes from the equality of the norm of the three-
dimensional Brownian motion (called three-dimensional Bessel process) and Brownian motion
on the half line [1, 10]. This is very easy to show by considering the radial part of
the Fokker–Planck equation of the three-dimensional Brownian motion. Now consider a
Brownian motion moving in three dimensions in the presence of the disorder at the origin,
one can map the system to the problem of one particle on the half line. The most generic
point interaction between disorder and particle comes from the self-adjoint extension of the
Hamiltonian of the free particle in punctured three-dimensional space [10] which is equal to
the free particle on the half line with the boundary condition that we discussed in section 2.
Then it is easy to see that the area distribution that we calculated is just the average distance
distribution in the period T between the disorder and the free particle with the generic point
interaction.

Another simple application, which is in the close connection with the previous example,
is the interacting interfaces. A path of Brownian motion in the x–t space is just like an
interface with zero roughness exponent. One can also look at this interface as an ensemble
of growth models such as the Edwards–Wilkinson model. Consider now two non-crossing
interfaces in the region [0, L] with the similar boundary conditions. This problem is equivalent
to the problem of two free particles on the real line. Consider, like the previous example,
point interactions between the particles. The interaction between the particles is equivalent
to the interaction between the interfaces. Then the area distribution that we calculated for
the elastic Brownian excursion is just the distribution of the average distance of the interfaces
in the interval [0, L]. One can also relax the boundary condition in one of the end points
and consider different boundary conditions for the different interfaces and use the results
corresponding to elastic Brownian meander area.

Since the elastic Brownian motion is the generalization of the Brownian motion in the
presence of the boundary we believe that all the possible applications should deal with
the boundary interaction or point interaction between two particles. In this paper, we just
calculated one possible functional of the elastic Brownian motion, the area. However, there
are many other functionals that can have interesting physical applications in the study of the
interacting non-crossing walkers or interacting interfaces. We will discuss some of these
functionals in the conclusion of the paper and give here one more example with more detail.

Consider the problem of p non-crossing walkers, which has application in describing
domain walls of elementary topological excitations in the commensurate adsorbed phases
close to the commensurate–incommensurate transition [18], in the presence of the boundary.
One interesting quantity is the maximal height distribution of the top walker that was already
calculated exactly for the vicious walkers in [19]. Walkers are vicious if they annihilate each
other when they meet. For simplicity we will discuss the simplest case p = 1. Consider H as
the maximal height of the walker in [0, 1] then one can define the cumulative distribution as

10
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P(M) = Prob[H � M]. We define N(ε,M) as the probability that the walker do an excursion
in the period [0, 1] starting at ε and coming back to the same point staying within the interval
[0,M]. The cut-off ε is just necessary for the Dirichlet boundary condition as we discussed
before. Since for this case the result is already known [20] we will put ε = 0 hereafter.
Then it is easy to show that N(0,M) = ∑

E |ψE|2e−E . The wavefunction is as (2.5), i.e.
ψE =

√
2
π

cos(kx + δk), with E = k2

2 and k is the solution to the equation cot(kM) = 2π
ηk

.
Finally, one can write the cumulative distribution as

P(M) = 1

Zη

∑
k

1(
1 +

(
2π
ηk

)2
) (

M
2 − 1

4k
sin(2kM)

)e−k2/2, (3.55)

where Zη comes from equation (3.3). For small η and small M with M < η one can simplify

the equation as P(M) ≈
√

2π
M

k2
0 e−k2

0/2, where k0 =
√

3− 6πM
η

M
.

Generalization of the above results to arbitrary p is straightforward, however, it is rather
cumbersome. From the perspective of our study in this paper one can generalize this problem
in two directions: the first possibility is considering non-vicious walkers, interacting domain-
walls, with a Dirichlet boundary condition on the wall. The second possibility is considering
vicious walkers with non-trivial interaction with the boundary.

4. The area of the Brownian bridge on the line with a point defect

In this section, we will summarize that some results come from the area calculation for the
Brownian bridge on the line with a point defect. The quantum-mechanical counterpart was
discussed in length in the literature and it is called the free particle on a line with a hole [15].
The functional integral for this problem was discussed in [13] and it is based on the different
local times of the particle in the two sides of the origin. The most general boundary condition
that respects the time reversal symmetry for the defect on the origin, after using self-adjoint
extension theory, is(

ψ ′
+(0)

ψ+(0)

)
=

(−α − β

−δ − γ

) (
ψ ′

−(0)

ψ−(0)

)
, (4.1)

with a constraint αγ − βδ = 1. For simplicity we will consider some special cases. It is easy
to see that for δ → ∞ the boundary condition decouples and we will have two decoupled half
lines and so the area distribution is as the previous section.

The next simple case is α = γ = −1 and δ = 0 which is equal to the free particle on the
line with the following delta function potential:

V (x) = −β

2
δ(x). (4.2)

To avoid the bound state we consider non-positive β. To calculate the area of this kind of
Brownian bridge one can use the method of the previous section. Interestingly, the results
are very similar to the previous section. The energy of the particle is Ek = 1

2k2 and the
wavefunctions are

ψk(x) =
√

1

π
cos(k|x| + δk), (4.3)

where tan(δk) = β

2k
. Then Z

β

E is the same as (3.3) after replacing η with 4π
β

. The
wavefunctions in the presence of the potential λ|x| can have different parities, they

11
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are

ψ
β

i (x) = 2−1/2(2λ)1/6Ai((2λ)1/3|x| − cβi)√
cβiAi2(−cβi) + Ai′2(−cβi)

, even parity, (4.4)

ψi(x) = sgn(x)2−1/2(2λ)1/6 Ai((2λ)1/3|x| − c−∞i )

Ai′(−c−∞i )
, odd parity, (4.5)

where cβ is the same as cη after replacing η with 4π
β

. Odd wavefunctions do not contribute
in the distribution of the area. The result for the even part is the same as the result for the
elastic Brownian excursion. It is easy to see that β = 0 is like the free Brownian motion and
so the distribution of the area is like Brownian bridge or like elastic Brownian excursion with
Neumann boundary condition, i.e. (3.25). β = −∞ is like the Dirichlet boundary condition
and the distribution of the area is (3.17) after considering η = 0.

The other simple boundary condition comes from α = γ = −1 , β = 0 and δ �= 0, in the
other words

ψ ′
+(0) − ψ ′

−(0) = 0, (4.6)

ψ+(0) − ψ−(0) = −δψ ′
−(0). (4.7)

The energy of the particle is Ek = 1
2k2 and the wavefunctions are

ψk(x) = sgn(x)

√
1

π
cos(k|x| + δk), (4.8)

where tan(δk) = 2
δk

. Then Zδ
E is the same as (3.3) after replacing η with πδ.

The wavefunctions in the presence of the potential λ|x| can have different parities, they
are

ψδ
i (x) = sgn(x)

2−1/2(2λ)1/6Ai
(
(2λ)1/3|x| − cπδ

i

)
√

cπδ
i Ai2

(−cπδ
i

)
+ Ai′2

(−cπδ
i

) , odd parity, (4.9)

ψi(x) = (2λ)1/6 Ai
(
(2λ)1/3|x| − c∞

i

)
√

2c∞
i Ai

(−c∞
i

) , even parity. (4.10)

The above calculation shows that in this case the distribution of the area can be calculated by
adding two terms. In this case, the even parity has contribution for the distribution of the area
which is equal to the Neumann boundary condition. Replacing η with πδ in the formula of
elastic Brownian excursion will give the contribution of the odd part. The case of δ → ∞
is equal to the Neumann boundary condition that separates the system into the two regions,
positive and negative parts of the real line. Of course having two solutions is an indicator of
degeneracy resulting from the parity invariancy of the system in this limit. δ = 0 is the free
particle case and one can see that only the even parity has contribution in the area distribution.

5. Conclusion and discussion

In this paper, we found the area distribution of the elastic Brownian motion in some limits.
Our method was based on the equality of this process with the self-adjoint Hamiltonian of the
quantum particle on the half line. The corresponding Hamiltonian for the area distribution
is just the Hamiltonian with linear potential. The eigenvalues of this Hamiltonian after self-
adjoint extension satisfy a transcendental equation and so for the generic case the distribution

12



J. Phys. A: Math. Theor. 42 (2009) 485205 M A Rajabpour

of the area is not available, however, in some limits the calculation is tractable. We found
perturbatively the area distribution of the Brownian excursion and the Brownian meander in
the presence of the weekly reflecting barrier. By using self-adjoint extension we found a
unified method to classify different possible area distribution for the Brownian motion in the
presence of the boundary. Some possible applications in diffusion phenomena in the presence
of disorder and interacting interfaces were also discussed.

We did similar calculations for the Brownian motion on the pointed line. The self-
adjoint Hamiltonian in this case has three independent parameters and the eigenvalues of
the Hamiltonian satisfy the same transcendental equation in some interesting limits. Similar
calculations can be useful in describing different distributions of diffusing particles in the
presence of point disorder.

Plenty of questions remain to be answered in the study of the elastic Brownian motion
by using quantum-mechanical techniques. Some of them are as follows: the case of the
maximal height of p non-intersecting Brownian excursions and Brownian bridges is also
interesting to be calculated [19], the possible connection of this study to the interacting
domain walls of elementary topological excitations in the commensurate adsorbed phases
close to the commensurate–incommensurate transition can be interesting. The other example
is the distribution of the time to reach the maximum [21]. Unfortunately, the eigenvalue
equations for the above cases are transcendental as we faced for one example in the end of
section 3 and so it is impossible to get a closed formula for the distributions, however, the exact
calculations in some limits may be possible. The other example is the distribution of the time
spent by the particle on the positive side of the origin out of the total time t. This distribution
was first calculated by Lévy in the case of the Brownian motion [22]. For the pointed
line the equations are again transcendental and need to be solved by numerical calculation.
We mostly focused on the distributions in one dimension, however, one can also try to calculate
the different distributions like the algebraic area distribution, winding number distribution in
the pointed two-dimensional space, the number of defects could be finite or infinite2. We
believe that the method of self-adjoint extension in quantum mechanics can be useful to
calculate such kind of distributions. It is also interesting to check our results with the numerical
calculations.
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